Computing with words with ANFIS to evaluate the organizational efficiency

Authors

  • Pascual Noradino Montes Dorantes Universidad Autónoma del Noreste (UANE), Campus Saltillo
  • Bertha Alicia Garza Ruiz
  • Gerardo Maximiliano Méndez

DOI:

https://doi.org/10.29059/educiencia.v5i1.184

Keywords:

Cómputo con palabras, lenguaje natural, evaluación, sistema de información

Abstract

This paper discusses why numeric values cannot be easily assigned to the organization components, as the use of linguistic variables that are difficult to be accurately measured by traditional methods. For this reason, a novel method is presented to evaluate the efficiency of an organization through soft computing models, such as the Neuro-Diffuse Adaptive Network (ANFIS) and the computing with words that are capable of doing so by transforming linguistic data into numerical data and vice versa. The field of research includes a basic review of the literature and a thoughtful posture of the researchers. The main objective is to develop and test a model to evaluate the efficiency of the organization supported by artificial intelligence techniques such as the adaptive fuzzy inference network (ANFIS). The proposal is relevant given that today there is no consensus among the different experts in the different fields of science of what the organization is. It is concluded that an engineering definition is necessary because the concept requires a mathematical approximation given the lack of consensus, the complexity of it, the non-linearity and uncertainty generated by the use of natural language and the lack of efficiency assessment models.

References

Aldabas-Rubira, E. (2002). Introducción al reconocimiento de patrones mediante redes neuronales. IX Jornades de Conferències d’Enginyeria Electrònica del Campus de Terrassa, Terrassa, España, del 9 al 16 de Diciembre del 2002.
Álvarez-Gayou, J. L. (2003). Cómo hacer investigación cualitativa. Fundamentos y metodología. Colección
Paidós Educador. México: Paidós Mexicana.
Anderson, J. A. (2007). Redes Neurales. Alfaomega.
Ayala, G., Peña, M., Pérez, F., Pérez, C. y Bravo, A. (2016). Modelo de gestión de conocimiento para los centros de producción de la Universidad Nacional Mayor de San Marcos. Theorēma, 1, 199-214.
Dorantes, P. N. M., Gómez, M. A. J., Santoyo, A. M., & Méndez, G. M. (2017) Fuzzy look-up table for knowledge management and decision making. Educational Alternatives, 15, 181-191.
Dorantes, P. N. M., & Mendez, G. M. (2015). Non-iterativeradial basis function neural networks to quality control via image processing. IEEE Latin America Transactions, 13(10), 3447-3451.
Dorantes, P. N. M., & Mendez, G. M. (2016). Type-2 fuzzy logic systems for temperature evaluation in ladlefurnace. IEEE Latin America Transactions, 14(8), 3914-3920.
Dorantes, P. N. M., Ruiz, B. A. G., & Méndez, G. M. (2018a). Organización como un concepto multidisciplinar que produce ambigüedad interpretativa. EDUCIENCIA, 3(2), 49-58.
Dorantes, P. N. M, Sánchez P. H., Cantú J. M., García, E., & Méndez G. M. (2018b). Design and optimization of Distribution Routes Using Evolutionary strategy and Type-1 Singleton Neuro-fuzzy systems. IEEE Latin America Transactions. 16(5), 1499-1507.
Hall, R. (1996). Organizaciones. Estructuras, procesos y resultados, Prentice Hall, México.
Hodder, R. (2016). Emotion, Organization, and Society. Society, 53(4), 425-434.
Ibarra, E. (2000). Teoría de la organización, mapa conceptual de un territorio en disputa. En E. de-la-Garza (Ed.), Tratado Latinoamericano de Sociología del Trabajo (pp. 245–283). México: FCE – FLACSO- UAM- COLMEX.
Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neurofuzzy and soft computing, a computational approach to learning and machine intelligence. Prentice Hall, Inc., Simon & Schuster/A Viacom Company, Upper Saddle River, NJ.
Le-Breton, D. (2012), Por una antropología de las emociones. Revista Latinoamericana de Estudios sobre Cuerpos, Emociones y Sociedad, 4(10), 67–77.
Mendel, J. M. (2001). Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions Upper Saddle River, NJ: Prentice-Hall.
Mendel, J. M. (2007). Computing with words and its relationships with fuzzistics. Information Sciences, 177(4), 988-1006.
Mendel, J. M., Zadeh, L.A., Trillas, E, Yager, R., Lawry, J., Hagras, H., & Guadarrama, S (2010), ‘What computing with words means to me’ [discussion forum]. IEEE Computational Intelligence Magazine, 5(1), 20-26.
Méndez, G. M., Dorantes, P. N. M., & Alcorta, M. A. (2020). Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm. Soft Computing, 24(1), 17-40.
Montes-Dorantes y Col. (2020). Computo para evaluar la eficiencia organizacional 81
Montaño, L. (2001). La razón, el afecto y la palabra: reflexiones en torno al sujeto en la organización. Iztapalapa. El sujeto construcción y deconstrucción, 21(50), 191-212.
Montaño, L. y Rendón M. (2000). La noción de organización. Iztapalapa, 48, 63- 84.
Rocha, E. (2015). Investigación y teorías de la comunicación masiva. 1ª Ed. México, D.F: Pearson.
UAM (2011). Plan de desarrollo institucional 2011-2024. Recuperado de http://www.uam.mx/pdi/pdi/pdi_2011_2024/assets/downloads/PDI_2011-2024.pdf. Fecha de consulta: 10 de enero de 2020.
Weick, K. (1976). Educational Organizations as Loosely Coupled Systems, Administrative Science Quarterly, 21(1), 1-19.

Published

2020-12-15

How to Cite

Montes Dorantes, P. N., Garza Ruiz, B. A., & Maximiliano Méndez, G. (2020). Computing with words with ANFIS to evaluate the organizational efficiency. EDUCIENCIA, 5(1), 54–67. https://doi.org/10.29059/educiencia.v5i1.184

Issue

Section

Estudios

Most read articles by the same author(s)